Log in

Login to your account

Username *
Password *
Remember Me
: 13 + 11 =

GPPS Journal Papers

An Analytical Approach to Estimate the Effect of Surface Roughness on Particle Rebound

User Rating: 5 / 5

Star ActiveStar ActiveStar ActiveStar ActiveStar Active
 Johannes Altmeppen, Heike Sommerfeld, Christian Koch, Stephan Staudacher   

Institute of Aircraft Propulsion Systems University of Stuttgart Pfaffenwaldring 6 D-70569 Stuttgart


Atmospheric air is always contaminated by liquid or solid particles of different size, concentration and chemical composition. This leads to performance degradation during the operation of stationary or flying gas turbines. Erosion and the deposition of particles along the flow path are of particular importance. Multiple numerical studies investigated the influences of these phenomena. However, the basic challenge of modelling the particle wall interaction and its data spread with sufficient accuracy remains. In this work a model that estimates the statistical spread of rebound data due to target surface roughness through analytical considerations is presented. The model predicts the local impact angle of an individual particle by evaluating how deep a particle can theoretically penetrate the target surface with respect to its size. Based on roughness profiles which have been found to be characteristic for performance deterioration in compressor application a sensitivity study is conducted. A dimensionless roughness parameter Φ_R was found that characterizes the effect of target surface roughness on rebound spread data. The spread model is connected with a quasi-physical model, to evaluate the effect of surface roughness for a particle’s individual rebound behaviour. The synthesized data is discussed by taking into account measurement data reported in literature.

Read Full Paper (Visit Journal Website)

Global Power and Propulsion Society (GPPS)


Address :

Landis + Gyr-Strasse 1, 6300 Zug, Switzerland

Tel. :

+41 44 632 50 72

Recent tweets

To minimize the potential impact of technical difficulties associated with a registration "bottleneck" occurring ju… https://t.co/z3cqVSd6nV
Vote today for your GPPS 2020 Awards candidate. Our new online form is now available. https://t.co/9axXsiXfwt
Register your place at the first GPPS Chania20 Online Conference. We look forward to hearing the latest leading-edg… https://t.co/gQLlKqkJ9E