Log in

Login to your account

Username *
Password *
Remember Me
: 9 + 7 =

GPPS Journal Papers

Influence of Blade Aspect Ratio on Axial Compressor Efficiency

Star InactiveStar InactiveStar InactiveStar InactiveStar Inactive
 
Markus Peters 1, Tobias Schmidt 1, Peter Jeschke 2  

1 MTU Aero Engines AG, Dachauer Str. 665, 80995 München
2 IST RWTH Aachen, Templergraben 55, 52062 Aachen

Abstract

A numerical study on the influence of compressor blade aspect ratio on profile and secondary loss has been conducted. In order to more accurately estimate the change in secondary loss, a new analytical model has been developed. The aspect ratio has been increased by reducing blade chord while maintaining blade height and solidity. A simplified compressor cascade geometry and an engine-like HPC stage geometry (rotor blade and stator vane) have been analysed with 3D CFD simulations. For these simulations, the solver TRACE has been used together with the k-ω turbulence model and a Low-Reynolds approach. A negative effect of increased aspect ratio on profile loss due to the lower Reynolds number has been observed as expected from literature. Moreover a decrease of secondary loss at increased aspect ratio due to smaller endwall regions has been noticed. While this effect is also well known, a significant influence of the assumptions regarding the incoming boundary layer thickness has been observed based on the cascade simulations. This leads to the conclusion that changing the aspect ratio of all blades and vanes of a multistage compressor causes a much stronger decrease in secondary loss per blade row than changing the aspect ratio of a single rotor or stator within the compressor. In literature so far only the first case is considered in common loss correlations. However considering the latter would increase the accuracy of secondary loss estimation for a non-uniform change in aspect ratio within a compressor.

Read Full Paper (Visit Journal Website)

Global Power and Propulsion Society (GPPS)

Address

Address :

Landis + Gyr-Strasse 1, 6300 Zug, Switzerland

Tel. :

+41 44 632 50 72

Recent tweets

To minimize the potential impact of technical difficulties associated with a registration "bottleneck" occurring ju… https://t.co/z3cqVSd6nV
Vote today for your GPPS 2020 Awards candidate. Our new online form is now available. https://t.co/9axXsiXfwt
Register your place at the first GPPS Chania20 Online Conference. We look forward to hearing the latest leading-edg… https://t.co/gQLlKqkJ9E