Log in

Login to your account

Username *
Password *
Remember Me
: 15 + 10 =

GPPS Journal Papers

The sensitivity of turbine cascade endwall loss to inlet boundary layer thickness

Star InactiveStar InactiveStar InactiveStar InactiveStar Inactive
 
John Coull 1, Christopher Clark 1, Raul Vazquez 2  

1 University of Cambridge, 1 J.J. Thomson Avenue, Cambridge, CB3 0DY, UK
2 Rolls-Royce plc., Victory Road, Derby, DE24 8EJ, UK
 

Abstract

The development of hub and casing boundary layers through a turbomachine is difficult to predict, giving rise to uncertainty in the boundary conditions experienced by each blade row. Previous studies in turbine cascades disagree on the sensitivity of endwall loss to such inlet conditions. This paper explores the problem computationally, by examining a large number of turbine cascades and varying the inlet boundary layer thickness. It is demonstrated that the sensitivity of endwall loss to inlet conditions is design dependent, and determined by the component of endwall loss associated with the secondary flow. This Secondary-Flow-Induced loss is characterised by a vorticity factor based on classical secondary flow theory. Designs that produce high levels of secondary vorticity tend to generate more loss and are more sensitive to inlet conditions. This sensitivity is largely driven by the dissipation of Secondary Kinetic Energy (SKE): thickening the inlet boundary layer causes the secondary vorticity at the cascade exit to be more dispersed within the passage, resulting in larger secondary flow structures with higher SKE. The effects are captured using a simple streamfunction model based on classical secondary flow theory, which has potential for preliminary design and sensitivity assessment.

Read Full Paper (Visit Journal Website)

Global Power and Propulsion Society (GPPS)

Address

Address :

Landis + Gyr-Strasse 1, 6300 Zug, Switzerland

Tel. :

+41 44 632 50 72

Recent tweets

To minimize the potential impact of technical difficulties associated with a registration "bottleneck" occurring ju… https://t.co/z3cqVSd6nV
Vote today for your GPPS 2020 Awards candidate. Our new online form is now available. https://t.co/9axXsiXfwt
Register your place at the first GPPS Chania20 Online Conference. We look forward to hearing the latest leading-edg… https://t.co/gQLlKqkJ9E